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Abstract
We present a multigroup model of the Boltzmann equations governing the
transient transport regime in polar semiconductors. Efforts have been made to
give an accurate description of the coupled hot-electron hot-phonon system,
which allows us to study the modifications of the carrier and longitudinal optical
phonon distribution functions in comparison to the usual equilibrium phonon
calculations. Computations are performed for InP, taking into account all the
relevant scattering mechanisms. We investigate the response of the coupled
electron–phonon system to a step-like high dc electric field pulse. Moreover,
we discuss the relation between our model and a matrix method.

PACS numbers: 05.60.−k, 05.20.Dd, 72.10.Dd

1. Introduction

Very large scale integration is the forthcoming design in semiconductor technology. This
implies that in modern integrated electron devices, the scale length of individual components
becomes comparable with the distance between successive carrier interactions with the crystal,
and the well-established drift–diffusion models describing carrier transport lose their accuracy
[1]. Consequently, to cope with high-field and sub-micrometre phenomena, Boltzmann
transport equations (BTEs) must be applied [2]. In femtosecond laser experiments, non-
equilibrium longitudinal-optical (LO) phonons have been found to strongly affect the electron
distribution function. Thus, for a unified treatment, one also has to include kinetic equations
for the evolution of phonons in a realistic description [3, 4].

Instead of a purely microscopic approach by means of the expensive Monte Carlo (MC)
methods, we intend to introduce a multigroup model for investigating the dynamics of the
electron distribution function (EDF) and LO phonon distribution function (PDF) that acts at
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a mesoscopic level. The development of such deterministic solution methods for the BTEs
becomes a great challenge. This is especially the case, when dealing with transient problems
in semiconductors. For such investigations it is not efficient to apply MC methods, which rely
on random sampling, since the results obtained can be noisy.

Based on the increasing power of modern computers, an alternative approach to the MC
method was proposed by Fatemi and Odeh [5]. They developed an upwind finite-difference
approximation for the Boltzmann–Poisson (BP) system. Majorana and Pidatella [6] solved the
BP system with the help of a box method in the energy and angle variables and combined this
approach with a classical discretization technique for advection equations based on upwinding
in the spatial variable. Recently, Carrillo et al [7] succeeded in introducing a deterministic
high-order finite-difference WENO solver for the solution of the one-dimensional BP system
for semiconductor devices. In addition, other deterministic approaches, based on series
expansion methods for the BTE, have been derived by Ringhofer [8]. The Galerkin method
used leads to a hyperbolic system solved by finite-difference methods in space-time variables
[9, 10].

In this paper we couple the electron BTE with a Boltzmann equation for phonons by
taking into account the relevant quantum statistics. Furthermore, we include several valleys
in the wave vector space of electrons in our model. In contrast to the above mentioned papers,
our approach to discretizing the BTEs is motivated on physical grounds. We divide the wave
vector spaces of electrons and phonons into small cells and transform the full BTEs into a
system of coupled transport equations balancing the particle transfer among these cells. The
particle density within each cell is represented by a Dirac distribution, which allows us to
analytically perform the collision integrals. From a mathematical point of view, our approach
is based on the method of weighted residuals [11], which is a finite-element technique.

Several variations of multigroup approaches have been published for an approximative
description of the dynamics of rarefied gases. Hence, the multigroup method can be regarded
as well established in the classical kinetic theory [12–14]. In this paper, we adapt this
formalism to the special requirements, related to the BTE in a polar semiconductor. In such
materials, the polar optical (POP) interaction between electrons and LO phonons is the main
relaxation mechanism at room temperature. As a consequence, the disturbance of the PDF from
thermal equilibrium, which cannot be neglected for sufficiently high doping concentrations,
significantly affects the EDF. Therefore, our calculations are performed for the coupled hot-
electron hot-phonon BTE system. This procedure allows us to study the modifications of
the main transport properties in III–V semiconductor compounds due to non-equilibrium LO
phonons. Moreover, we compare the results for the coupled system with those gained with
the help of the usual assumption of LO phonons being in equilibrium.

The numerical method presented is used for the investigation of the transient transport
regime in InP in response to the onset of a step-like high dc electric field. It turns out that
our method exceeds the accuracy of classical drift diffusion models especially at high electric
fields and when taking into account non-equilibrium LO phonons. However, it is by no means
as time consuming as a typical MC method. Moreover, the simple numerical evaluation
of the non-linear collision terms is responsible for a large amount of computational power
saved in comparison to another mesoscopic method [4] we refer to by discussing the relations
of the gained results. Therefore, our multigroup method seems to be a very powerful tool
for an accurate simulation of transport phenomena influenced by hot-phonon hot-electron
interactions. This approach can easily be extended to BP systems without changing the main
ideas of our model.

Our paper is organized as follows: the underlying physical model for InP is described
in section 2. Section 3 deals with the mathematical formulation of our multigroup model.
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Finally, we apply this method to InP in section 4 and compare the results with those of the
matrix method in [4].

2. The physical model

In this paper we consider n-type InP with a doping concentration of ND = 1017 cm−3 at
temperature TL = 300 K. Therefore, we are allowed to neglect holes in the valence band. The
conduction band is approximated by the � valley centred at 〈0, 0, 0〉 and four equivalent L
valleys along 〈1, 1, 1〉. These valleys are assumed to be spherical and non-parabolic. The X
valleys are neglected in our calculations.

Regarding the collision mechanisms, we consider acoustic deformation potential (ADP)
and acoustic piezoelectric (PZ) scattering, polar optical (POP), optical deformation potential
(ODP) scattering in L valleys and impurity scattering (IMP), which are all intravalley processes,
and non-polar optical intervalley (IV) scattering. Since ADP and PZ scattering are not efficient
at 300 K, these mechanisms are regarded as being elastic. For the intervalley transfer, we
take into account two types of zone-boundary phonons. The ionized impurity scattering is
described with the help of the Brook–Herring model and by assuming equal electron and donor
concentrations. The material parameters we use in our calculations are found in table 1.

3. The multigroup approach

In this section, we present the multigroup model BTEs describing the transport properties in
polar semiconductors. To begin with, we summarize below some relations needed.

The dispersion law, which relates the energy Eν of an electron, measured from the bottom
of the valley ν, with its wave vector k, is given by

Eν(k)(1 + ανE
ν(k)) = h̄2k2

2m∗
ν

(1)

and vice versa, kν(E) = 1
h̄

[2m∗
νE(1 + ανE)]

1
2 . Here, k denotes the modulus of the wave vector,

αν and m∗
ν are, respectively, the non-parabolicity factor and the effective mass in the valley ν.

This implies that the density of states Zν(E) = m∗
ν(2πh̄)−3(1 + 2ανE)[2m∗

νE(1 + ανE)]
1
2 .

As for phonons, we apply the standard approximations for the energy–momentum rule,
i.e. the energy h̄ω(q) and the wave vector q are related via ωac(q) = vs|q| and ωop(q) = ω0

in the cases of acoustic and optical phonons, respectively. The symbol vs denotes the sound
velocity.

The wave vectors k and q are represented as k = (k sin α cos ϕ, k sin α sin ϕ, k cos α)

and q = (q sin β cos ε, q sin β sin ε, q cos β) in a coordinate system whose z-axis is parallel
to the direction of the external electric field E. Figure 1 explains the meaning of the angles
used. It illustrates a scattering event from an electron state k to k′, absorbing a phonon with
wave vector q. For our purposes, it is convenient to introduce the quantities ϑ = cos α and
χ = cos β.

Due to the cylindrical symmetry with respect to the electric field E, the electron
distribution function f ν(k) in the valley ν and the LO phonon distribution function g(q)

do not depend on the azimuthal angles ϕ and ε. In other words, we consider f ν = f ν(E, ϑ)

and g = g(q, χ). In the EDF, we use the electron energy E as one of the independent variables
instead of the modulus of the wave vector k for convenience.
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Table 1. Material parameters used in InP.

General characteristics
Quantity Symbol Unit Value

Mass density ρ kg m−3 4830
Sound velocity vs m s−1 5160
HF relative dielectric constant κ∞ 9.56
Static relative dielectric constant κ0 12.3
LO phonon relaxation time τL ps 5.8

Band parameters
Quantity Symbol Unit Valley � Valley L

Relative effective mass m∗/m0 0.08 0.4
Non-parabolicity factor α∗ (eV)−1 0.627 0.621
Gap referred to � minimum �νµ eV 0.610
Number of equivalent valleys Zµ 1 4

Intravalley scattering parameters
Quantity Symbol Unit Valley � Valley L

Acoustic deformation potential DA eV m−1 7 12
Piezoelectric constant DPZ C m−2 0.0131 0.0131
TO phonons

Deformation potential DTO eV m−1 6.7 × 1010

Energy h̄ωTO meV 43
LO phonons

Energy h̄ωLO meV 43.20 43.20

Intervalley scattering parameters
(intervalley phonon 1)

Deformation potential
Energy h̄ωνµ (meV) Dνµ (109 eV m−1)

� L � L
� 33.7 � 137
L 33.7 33.7 L 137 56

Intervalley scattering parameters
(intervalley phonon 2)

Deformation potential
Energy h̄ωνµ (meV) Dνµ (109 eV m−1)

� L � L
� 6.8 � 14
L 6.8 L 14

3.1. The electron Boltzmann equation

The evolution of the electron distribution function f ν in bulk semiconductors is governed by
the electron BTE

∂f ν

∂t
− e

h̄
E · ∇kf ν =

∑
ξ

Cξ [f ν]. (2)

In this equation, ξ represents all the involved scattering mechanisms, mentioned in section 2.
The collision terms Cξ [f ν] typically read, neglecting degeneracy,
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Figure 1. The absorption of a phonon with wave vector q, scattering an electron from the initial
state k to the final state k′.

Table 2. Transition rates.

Electrons
Scattering type ξ Sξ (k → k′)

ADP scattering 2πD2
Agac(|k − k′|)|k − k′|δ[E(k′) − E(k)]/vsρV

PZ scattering 2π(eDPZ)2gac(|k − k′|)δ[E(k′) − E(k)]/(κ0ε0)
2vsρV |k − k′|

POP scattering KPOP := πe2ωLO(1/κ∞ − 1/κ0)/ε0V

Emission KPOP[gLO(k − k′) + 1]δ[E(k′) − E(k) + h̄ωLO]/|k − k′|2
Absorption KPOPgLO(k′ − k)δ[E(k′) − E(k) − h̄ωLO]/|k − k′|2

ODP scattering
Emission πD2

TO[gTO(k − k′) + 1]δ[E(k′) − E(k) + h̄ωTO]/ωTOρV

Absorption πD2
TOgTO(k′ − k)δ[E(k′) − E(k) − h̄ωTO]/ωTOρV

IMP scattering 2πNDe4δ[E(k′) − E(k)]/h̄κ2
0 ε2

0V
[
4k2 sin2

(
k · k′/2kk′) + 1/L2

D

]2

IV scattering
Emission πZµD2

νµ[gIV(k − k′) + 1]δ[Eµ(k′) − Eν(k) + h̄ωνµ − �νµ]/ωνµρV

Absorption πZµD2
νµgIV(k′ − k)δ[Eµ(k′) − Eν(k) − h̄ωνµ − �νµ]/ωνµρV

LO phonons
Scattering type η Sη(q)

POP scattering
Emission KPOPf ν(k)δ[E(k − q) − E(k) + h̄ωLO]/|q|2
Absorption KPOPf ν(k)δ[E(k + q) − E(k) − h̄ωLO]/|q|2

Cξ [f ν] = V

8π3

∫
d3k′[Sξ (k

′ → k)f ν(k′) − Sξ (k → k′)f ν(k)]. (3)

The symbol Sξ (k → k′) is the transition rate from state k to k′, V is the volume of the
crystal and e denotes elementary charge. Here and in all the other integrals with unspecified
integration intervals, the integration is performed over all the states k associated with the
valley ν. A list of the expressions used for the transition rates Sξ [15, 16] is given in table 2.
For ODP and IV scattering, the phonon distribution functions gTO and gIV are assumed to
be the equilibrium Bose–Einstein distributions. In the cases of ADP and PZ scattering with
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acoustic phonons, equipartition is regarded: gac(q) ≈ gac(q) + 1 ≈ kBTL/h̄ωac(q), where kB

is the Boltzmann constant.
To deal with the electron BTE, we proceed as follows. First, we introduce the new

function Fν , defined by Fν(E, ϑ) = Zν(E)f ν(E, ϑ). As a consequence, the integration of
the EDF with respect to k can be written as

1

8π3

∫
d3kf ν(k) =

∫
dE

∫
dϑ

∫ 2π

0
dϕF ν(E, ϑ). (4)

The second step of constructing the multigroup model BTEs consists of introducing a partition
of the (E, ϑ) space into cells Cν

ij = [
Eν

i−1, Eν
i

] × [
�ν

j−1,�
ν
j

]
, i = 1, 2, . . . , Nν, j =

1, 2, . . . ,Mν . The boundary values of this partition are set to �ν
0 = −1,�ν

Mν = 1, Eν
0 = 0

and Eν
Nν = Emax, so that Fν(Emax, ϑ) can be considered negligible.

To obtain an approximative solution to the electron BTE, we express the distribution
function Fν as the finite sum

Fν(E, ϑ) =
Nν∑
i=1

Mν∑
j=1

nν
ij δ

(
E − Eν

i

)
δ
(
ϑ − ϑν

j

)
. (5)

The poles of the Dirac distributions must fulfil the conditions Eν
i ∈ I

E,ν
i = (

Eν
i−1, Eν

i

)
and

ϑν
j ∈ I

�,ν
j = (

�ν
j−1,�

ν
j

)
. For a physical interpretation of the coefficients nν

ij in (5), we
evaluate the particle density 〈nν〉ij , due to electrons with energies and directions within the
cell Cν

ij in the valley ν. Following the definitional equation of this quantity and replacing the
original EDP by the ansatz made above, we find by taking advantage of (4)

〈
nν

ij

〉 = 1

4π3

∫
Cν

ij

d3kf ν(k) = 4π

Nν∑
a=1

Mν∑
b=1

∫
I
E,ν
i

dE

∫
I

�,ν
i

dϑnν
abδ

(
E − Eν

a

)
δ
(
ϑ − ϑν

b

) = 4πnν
ij .

(6)

In other words, the coefficients nν
ij are equal to the electron density in the cell Cν

ij except for
a constant factor. The same procedure allows us to determine other important macroscopic
quantities such as the total electron density 〈nν〉, the drift velocity 〈vν〉 in the direction of the
electric field (unit vector ez) and the mean energy 〈Eν〉:

〈nν〉 = 1

4π3

∫
d3kf ν(k) = 4π

Nν∑
i=1

Mν∑
j=1

nν
ij (7a)

〈nν〉〈vν〉 = 1

4π3h̄

∫
d3k

∂E(k)

∂k
·ezf

ν(k) = 4πh̄

m∗
ν

Nν∑
i=1

Mν∑
j=1

kν
(
Eν

i

)
1 + 2ανE

ν
i

ϑν
j nν

ij (7b)

〈nν〉〈Eν〉 = 1

4π3

∫
d3kEν(k)f ν(k) = 4π

Nν∑
i=1

Mν∑
j=1

Eν
i n

ν
ij . (7c)

To construct the equations which govern the evolution of the coefficients nν
ij , we follow

the method of weighted residuals [11]. The electron BTE (2) is integrated over the cell Cν
ij .

With the help of (4), the integration variables are transformed into E and ϑ . Whenever the
product Zνf ν appears, it is replaced by the ansatz (5). This procedure ends in a set of Nν ×Mν

equations for the Nν × Mν unknowns nν
ij .
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Following this strategy, we find for the first term of the electron BTE, containing the
temporal derivative,

1

8π3

∫
Cν

ij

d3k
∂f ν

∂t
= 2π

∂nν
ij

∂t
. (8)

Special attention is paid to a suitable formulation of the force term CE[f ν] =
−eE · ∇kf ν/h̄. Here, our procedure yields, without writing terms that contain the azimuthal
angle ϕ since these terms vanish after the integration with respect to ϕ,

1

8π3

∫
Cν

ij

d3kCE[f ν] = −e|E|
8π3h̄

∫
Cν

ij

d3k

(
ϑ

∂f ν

∂k
+

1 − ϑ2

k

∂f ν

∂ϑ

)

= − 2πe|E|
h̄

Nν∑
a=1

Mν∑
b=1

∫
I
E,ν
i

dE

∫
I

�,ν
j

dϑ

×
[(

∂kν(E)

∂E

)−1

ϑnν
abδ

(
ϑ − ϑν

b

) ∂

∂E
δ
(
E − Eν

a

)

+
1 − ϑ2

kν(E)
nν

abδ
(
E − Eν

a

) ∂

∂ϑ
δ
(
ϑ − ϑν

b

)]
. (9)

The application of the standard algebra for evaluating the derivatives of Dirac distributions to
this result leads to

1

8π3

∫
Cν

ij

d3kCE[f ν] = 2πe|E|
h̄

{
ϑν

j

∫
I
E,ν
i

dEδ
(
E − Eν

i

) h̄2

m∗
ν

∂

∂E

(
kν(E)

1 + 2ανE
nν

ij

)

+
1

kν
(
Eν

i

) ∫
I

�,ν
j

dϑδ
(
ϑ − ϑν

j

) ∂

∂ϑ

[
(1 − ϑ2)nν

ij

]}
. (10)

Now, we replace the derivatives with respect to E and ϑ by

∂

∂E

(
kν(E)

1 + 2ανE
nν

ij

)
= − 1

Eν
i − Eν

i−1

[
kν

(
Eν

i

)
1 + 2ανEν

i

[
nν

ij

]+ − kν
(
Eν

i−1

)
1 + 2ανEν

i−1

[
nν

ij

]−
]

(11a)

∂

∂ϑ

[
(1 − ϑ2)nν

ij

] = − 1

�ν
j − �ν

j−1

[(
1 − �ν2

j

)
nν

i,j+1 − (
1 − �ν2

j−1

)
nν

ij

]
(11b)

with

[
nν

ij

]+ =
{

nν
i+1,j if ϑν

j > 0

nν
ij if ϑν

j < 0

[
nν

ij

]− =
{

nν
ij if ϑν

j > 0

nν
i−1,j if ϑν

j < 0.

These expressions are justified by heuristically gained evolution equations for the particle
density

〈
nν

ij

〉
in the cell Cν

ij . The detailed derivation of these expressions, which is based on the

pseudo-Newtonian law for the electron state h̄k̇ = −eE, is found in [17].
As a result, we obtain the multigroup version of the force term by inserting (3.1) into (10):

1

8π3

∫
Cν

ij

d3kCE[f ν] = −2πe|E|
h̄

{
h̄2

m∗
ν

ϑν
j

Eν
i − Eν

i−1

[
kν

(
Eν

i

)
1 + 2ανEν

i

[
nν

ij

]+ − kν
(
Eν

i−1

)
1 + 2ανEν

i−1

[
nν

ij

]−
]

+
1

kν
(
Eν

i

) 1

�ν
j − �ν

j−1

[(
1 − �ν2

j

)
nν

ij+1 − (
1 − �ν2

j−1

)
nν

ij

]}
. (12)
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From a physical point of view, expression (13) describes the fluxes between neighbouring
cells induced by the electric field. The particle conservation with respect to the electric field
can be ensured, when terms which describe flows at boundary cells in and out of the chosen
finite (E, ϑ) space are set to zero.

Now, we turn to the collision terms. As for generality, we consider a scattering mechanism
ξ acting between the valleys ν and µ. With this formalism, we can describe all the scattering
mechanisms (µ = ν for intravalley scattering) except for the POP interaction (section 3.3).

Firstly, the loss terms Lξ [f ν] = f ν(k)V
∫

d3k′Sν→µ
ξ (k → k′)/8π3 for the valley ν

(see (3)) are transformed into our multigroup scheme:

1

8π3

∫
Cν

ij

d3kLξ [f ν] = 2π

Nµ∑
a=1

Mµ∑
b=1

〈
S

ν→µ

ξ,ab

〉
ij
nν

ij (13)

with〈
S

µ→ν

ξ,ab

〉
ij

= V

8π3

∫
I
E,ν
i

dE

∫
I

�,ν
j

dϑ

∫
Cµ

ab

d3k′Sν→µ
ξ (k → k′)δ

(
E − Eν

i

)
δ
(
ϑ − ϑν

j

)
. (14)

Secondly, the gain terms Gξ [f ν] = V
∫

d3k′Sµ→ν
ξ (k′ → k)f µ(k′)/8π3 are found to

equal

1

8π3

∫
Cν

ij

d3k Gξ [f ν] = V

(8π3)2

Nµ∑
a=1

Mµ∑
b=1

∫
Cν

ij

d3k

∫
Cµ

ab

d3k′Sµ→ν
ξ (k′ → k)f µ(k′). (15)

By exchanging the names of the integration variables k and k′ and comparing the result with
(14), it can easily be seen that

1

8π3

∫
Cν

ij

d3k Gξ [f ν] = 2π

Nµ∑
a=1

Mµ∑
b=1

〈
S

µ→ν

ξ,ij

〉
ab

n
µ

ab. (16)

Finally, we achieve the multigroup formulation of the electron BTE for the valley ν by
adding expressions (8), (12), (13) and (14). These equations read, cancelling a factor 2π and
neglecting obsolete valley indices,

∂nν
ij

∂t
− e|E|

h̄

{
h̄2

m∗
ν

ϑν
j

Eν
i − Eν

i−1

[
kν

(
Eν

i

)
1 + 2ανEν

i

[
nν

ij

]+ − kν
(
Eν

i−1

)
1 + 2ανEν

i−1

[
nν

ij

]−
]

+
1

kν
(
Eν

i

) 1

�ν
j − �ν

j−1

[(
1 − (

�ν
j

)2)
nν

ij+1 − (
1 − (

�ν
j−1

)2)
nν

ij

]}

=
∑

ξ,ξ 
=IV,POP

Nν∑
a=1

Mν∑
b=1

(〈
Sν

ξ,ij

〉
ab

nν
ab − 〈

Sν
ξ,ab

〉
ij
nν

ij

)
+

1

16π4

∫
Cν

ij

d3kCPOP[f ν]

+
∑

µ,µ 
=ν

Nµ∑
a=1

Mµ∑
b=1

(
Zµ

〈
S

µ→ν

IV,ij

〉
ab

n
µ

ab − Zν

〈
S

ν→µ

IV,ab

〉
ij
nν

ij

)
(17)

where i = 1, 2, . . . , Nν, j = 1, 2, . . . ,Mν .

3.2. The LO phonon Boltzmann equation

The evolution equation for the distribution function g(q) of LO phonons depending on the
phonon state q reads

∂g

∂t
= DPH–PH[g] +

∑
ν

2ZνD
ν
POP[g]. (18)
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Here, we assume that the PDF can be disturbed by phonon–phonon thermalization processes
due to DPH–PH[g] and the POP interaction with electrons of the valleys ν according to Dν

POP[g].
The lattice scattering term in (18) is described through a relaxation time τL

DPH–PH[g] = [gL − g(q)]τ−1
L (19)

where gL is the Bose–Einstein equilibrium distribution at lattice temperature TL. In [3, 4],
the proper choice of the parameter τL is discussed. We follow these arguments leading to the
value for τL proposed in table 1.

Regarding the POP collision term, we find

Dν
POP[g] = V

8π3

∫
d3k

{
Sem

POP(q)[g(q) + 1] − Sabs
POP(q)g(q)

}
(20)

with the transition rates Sem
POP(q) and Sabs

POP(q) for phonon emission and absorption, respectively,
which are given in table 2.

The LO phonon BTE is treated in the same way as the electron BTE. Hence, we define
G(q, χ) = q2g(q, χ)/8π3, which leads to

1

8π3

∫
d3q g(q) =

∫
dq

∫
dχ

∫ 2π

0
dε G(q, χ). (21)

The wave vector space (q, χ) is divided into cells Dxy = [Qx−1,Qx] × [Xy−1, Xy], x =
1, 2, . . . , R, y = 1, 2, . . . , S, with the boundary values X0 = −1, XS = 1,Q0 = 0 and
QR = qmax. Here, qmax is chosen so that g(q) can be considered undisturbed by the POP
interaction with electrons.

Similar to (5), we represent the distribution function G by the ansatz

G(q, χ) =
R∑

x=1

S∑
y=1

rxyδ(q − qx)δ(χ − χy) (22)

demanding qx ∈ IQ
x = (Qx−1,Qx) and χy ∈ IX

y = (Xy−1, Xy). Macroscopic quantities for the
LO phonons can be evaluated with the help of expressions similar to those in section 3.1. As
an example, the phonon density 〈rxy〉 of LO phonons with wave vector q within the cell Dxy

is given by

〈rxy〉 = 1

8π3

∫
Dxy

d3q g(q) = 2πrxy. (23)

The R×S evolution equations for the coefficients rxy are found by the following strategy:
the phonon BTE is integrated over the cell Dxy . By taking advantage of (21), we obtain an
evolution equation for the function G. Here, we replace the function G by the ansatz (22) and
carry out all possible integrations.

Hence, the left-hand side of the phonon BTE (18) becomes

1

8π3

∫
Dxy

d3q
∂g

∂t
= 2π

∂rxy

∂t
. (24)

The application of our multigroup formalism to the phonon–phonon interaction term
DPH–PH[g] yields

1

8π3

∫
Qxy

d3qDPH–PH[g] = 2π

τL

(
requi
xy − rxy

)
(25)

where the equilibrium coefficients r
equi
xy are calculated via

requi
xy = 1

16π4

∫
Dxy

d3q

[
exp

(
h̄ωLO

kBTL

)
− 1

]−1

. (26)
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By summarizing the terms (24) and (25), the transformation of the phonon BTE into our
multigroup scheme results in

∂rxy

∂t
= 1

τL

(
requi
xy − rxy

)
+

∑
ν

2Zν

16π4

∫
Qxy

d3qDν
POP[g] (27)

x = 1, 2, . . . , R, y = 1, 2, . . . , S, except for the POP interaction term, which is discussed in
the next section.

3.3. The coupling POP interaction term

In this section, we deal with the most important terms of our multigroup model—the polar
optical scattering terms—that couple the electron and the LO phonon Boltzmann equations.
On one hand, these expressions describe how the lattice is modified by the hot electrons. On
the other, the electron transport properties are essentially influenced by these hot phonons. In
consequence, these coupling terms are responsible for a significant deviation of the results
from those based on the usual equilibrium phonon calculations.

To begin with, we consider the POP interaction term of the electron BTE CPOP[f ν]. In
its full form, it reads (cf table 2)

CPOP[f ν] = V

8π3

∫
d3k′

{
KPOP

|k − k′|2 f ν(k′)[g(k′ − k) + 1]δ[Eν(k′) − Eν(k) − h̄ωLO]

+
KPOP

|k − k′|2 f ν(k′)g(k − k′)δ[Eν(k′) − Eν(k) + h̄ωLO]

− KPOP

|k − k′|2 f ν(k)[g(k − k′) + 1]δ[Eν(k′) − Eν(k) + h̄ωLO]

− KPOP

|k − k′|2 f ν(k)g(k′ − k)δ[Eν(k′) − Eν(k) − h̄ωLO]

}
. (28)

Following our multigroup scheme, we integrate the electron BTE (2) over the cell Cν
ij and

replace the distribution function by the ansatz (5). For the PDF g, we use expression (22)
divided by q2/8π3. The additional factor 1 in the phonon emission terms is expanded to∑

x ′y ′ Vx ′y ′δ(q − qx ′)δ(χ −χy ′)/q2 with Vxy = (
Q3

x −Q3
x−1

)
(Xy − Xx−1)/3. This replacement

is justified by the fact that these expressions are equal after the integration over the cell Dxy :

1

8π3

∫
IQ
x

dq q2
∫

IX
y

dχ = 1

8π3

R∑
x ′=1

S∑
y ′=1

Vx ′y ′

∫
IQ
x

dq

∫
IX
y

dχ δ(q − qx ′)δ(χ − χy ′). (29)

In this way, we find for the loss term LPOP[f ν] of the electron BTE due to POP interaction

1

8π3

∫
Cν

ij

d3k LPOP[f ν]

= 2π

Nν∑
a=1

Mν∑
b=1

R∑
x=1

S∑
y=1

[(〈
Eν,xy

POP,ab

〉
ij
rxy +

〈
1ν,xy

POP,ab

〉
ij

)
+

〈
Aν,xy

POP,ab

〉
ij
rxy

]
nν

ij (30)

with

〈
Eν,xy

POP,ab

〉
ij

= V KPOP

q3
x

∫
I
E,ν
i

dE

∫
I

�,ν
j

dϑ

∫
Cν

ab

d3k′δ
(
E − Eν

i

)
δ
(
ϑ − ϑν

j

)
δ(|k − k′| − qx)

× δ
[
(k − k′) · ez − qxχy

]
δ(Eν(k′) − E + h̄ωLO) (31a)
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〈
Aν,xy

POP,ab

〉
ij

= V KPOP

q3
x

∫
I
E,ν
i

dE

∫
I

�,ν
j

dϑ

∫
Cν

ab

d3k′ δ
(
E − Eν

i

)
δ
(
ϑ − ϑν

j

)
δ(|k′ − k| − qx)

× δ
[
(k′ − k) · ez − qxχy

]
δ(Eν(k′) − E − h̄ωLO) (31b)

〈
1ν,xy

POP,ab

〉
ij

= Vxy

〈
Eν,xy

POP,ab

〉
ij

/
8π3 (31c)

and ez = E/|E|. With the help of similar symmetry arguments as applied in section 3.1, the
multigroup version of the corresponding gain term can be deduced. Therefore, the collision
term for the POP scattering of the electron BTE in our multigroup scheme is given by

1

8π3

∫
Cν

ij

d3k CPOP[f ν] = 2π

Nν∑
a=1

Mν∑
b=1

R∑
x=1

S∑
y=1

[(〈
Eν,xy

POP,ij

〉
ab

rxy +
〈
1ν,xy

POP,ij

〉
ab

)
nν

ab

+
〈
Aν,xy

POP,ij

〉
ab

rxyn
ν
ab − (〈

Eν,xy

POP,ab

〉
ij
rxy +

〈
1ν,xy

POP,ab

〉
ij

+
〈
Aν,xy

POP,ab

〉
ij
rxy

)
nν

ij

]
. (32)

The absorption collision coefficient
〈
Aν,xy

POP,ab

〉
ij

, for instance, is evaluated in the appendix.
Regarding the POP scattering term Dν

POP[g] in the phonon BTE, we find

Dν
POP[g] = V

8π3

∫
d3k

KPOP

|q|2 f ν(k){[g(q) + 1]δ[E(k − q) − E(k) + h̄ωLO]

− g(q)δ[E(k + q) − E(k) − h̄ωLO]} (33)

by inserting the scattering rates from table 2 in (20). After performing our multigroup
transformation, we obtain with the help of (5), (22) and a similar procedure for handling the
additive factor 1 for phonon emission

1

8π3

∫
Dxy

d3qDν
POP[g] = 2π

Nν∑
i=1

Mν∑
j=1

[(〈
E

ij

POP

〉
xy

− 〈
A

ij

POP

〉
xy

)
rxy +

〈
1ij

POP

〉
xy

]
nν

ij (34)

where

〈
E

ij

POP

〉
xy

= V KPOP

8π3q2
x

∫
IQ
x

dq

∫
IX
y

dχ

∫
Cν

ij

d3k
1

Zν(Eν(k))
δ
(
E − Eν

i

)
δ
(
ϑ − ϑν

j

)
δ(q − qx)

× δ(χ − χy)δ[Eν(k − q) − Eν(k) + h̄ωLO] (35a)

〈
A

ij

POP

〉
xy

= V KPOP

8π3q2
x

∫
IQ
x

dq

∫
IX
y

dχ

∫
Cν

ij

d3k
1

Zν(Eν(k))
δ
(
E − Eν

i

)
δ
(
ϑ − ϑν

j

)
δ(q − qx)

× δ(χ − χy)δ[Eν(k + q) − Eν(k) − h̄ωLO] (35b)

〈
1ij

POP

〉
xy

= Vxy

〈
E

ij

POP

〉
xy

. (35c)

Inserting expressions (32) and (34) in the multigroup versions of the electron and phonon
equations (17) and (27), respectively, results in the final set of evolution equations for the
coefficients nν

ij and rxy .

4. Results

The application of our multigroup model to the coupled electron LO phonon regime in response
to a step-like high dc electric field pulse is demonstrated in this section. All the relevant material
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Table 3. The computation times tCPU for the solution of the multigroup equations (17) and (27)
with N� = 44, NL = 16, R = 40, M� = ML = S = 12 up to 20 ps after the onset of the electric
field pulse for several electric field strengths |E| and relative accuracies εr.

Equilibrium phonons Hot phonons

εr = 10−3 εr = 10−5 εr = 10−3 εr = 10−5

|E| (kV cm−1) tCPU (s) tCPU (s) tCPU (s) tCPU (s)

1 6.1 13.6 10.7 15.8
10 9.3 16.4 11.9 19.8
50 9.8 17.9 34.2 36.3

parameters of InP are given in table 1. In our calculations, the moduli of the wave vectors of
electrons and phonons are restricted up to kmax = qmax = 1.7 × 109 m−1. This implies that the
maximal energies in the � and L valleys are E�

max = 0.86 eV and EL
max = 0.26 eV, respectively.

We assume the (E, θ) and the (q, χ) space to be equidistantly partitioned. The poles of the
Dirac distributions in (5) and (22) are simply set to Eν

i = (
Eν

i +Eν
i−1

)
/2, ϑν

j = (
�ν

j +�ν
j−1

)
/2,

qx = (Qx + Qx−1)/2 and χy = (Xy + Xy−1)/2. Several simulations have shown that with
an increasing number of intervals, the influence of this choice as well as those of the specific
partitions of the (E, ϑ) and the (q, χ) space become negligible.

Before the electric field pulse begins, the electron–phonon system is supposed to be in
thermal equilibrium. Therefore, the initial values of the coefficients nν

ij and rxy are obtained
from the corresponding equilibrium distributions at lattice temperature TL and electron density
ND via (6) and (23).

The multigroup equations (17) and (27) are solved with the help of an explicit Euler
scheme with adaptive step-size control demanding the relative accuracy εr. The calculations
are performed with an AMD Athlon MP 2000+ processor, 1666 MHz, 2000 MB RAM.
Table 3 presents the CPU times needed for integrating the multigroup equations up to 20 ps
after the onset of the electric field pulse for several electric field strengths and accuracies.
The partitions of the wave vector spaces in these calculations are the same as those used
for deducing the current-field characteristics displayed in figure 3. The computation times
increase for higher electric fields, higher required accuracies and when solving the coupled
electron–phonon system instead of taking into account only equilibrium phonons. The higher
demand on computational power for including hot-phonon effects in the transport model is
justified by the fact that the influence of the disturbed LO phonon distribution on macroscopic
transport quantities cannot be neglected in the presented case (cf figure 3). To achieve an
accelerated solution technique, which is most welcome in the application to space dependent
problems for a realistic device simulation, our multigroup approach can be combined with
more advanced differential equation solution routines.

4.1. Validation of the method

To check the validity of the numerical procedure illustrated in the previous section, we compare
the results obtained with the help of our method with those calculated by using a matrix method
[4].

To this end, we study the temporal evolution of the EDF f � of the � valley along the
external electric field. According to the above considerations, the main quantities in our model
are not the distribution function itself but the particle densities nν

ij of electrons with energies
and polar angles within the cell Cν

ij . Hence, it is not possible to compare the results of both
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Figure 2. The electron distribution function f �(kz) in the � valley versus the component of the
wave vector kz in the direction of the electric field with E = 10 kV cm−1 for several times after
the beginning of the electric field pulse. The solid lines refer to calculations performed with our
multigroup approach; the crosses refer to the matrix method from Vaissiere et al [4].

methods directly. However, we obtain an approximate expression for the distribution function
f ν

(
kν

(
Eν

i

)
, ϑj

)
via

f ν
(
kν

(
Eν

i

)
, ϑj

) = nν
ij

[
Zν

(
Eν

i

)
(Ei − Ei−1)(�j − �j−1)

]−1
(36)

which can be derived from the mean value theorem of integral calculus. It should be
noted that the above approximation fails for small energies Eν

i because of our equidistant
energy partition. Therefore, comparisons can only be performed for sufficiently high
energies.

Figure 2 displays the distribution function f (kz) versus the z-component of the wave
vector in the direction of the electric field at two times after the beginning of the electric field
pulse. Unfortunately, the results in [4] are given in arbitrary units, and we must introduce one
scaling factor. Despite this uncertainty, figure 2 allows us to state that the results for the EDF
in the � valley as well as its temporal evolution gained with the help of the matrix method and
by our model coincide very well.

Additionally, we have evaluated the two transport parameters, the average drift velocity in
the direction of the electric field and the average electron energy for several values of the applied
electric field, with the help of formulae (7b) and (7c), which are reported in figure 3. Our
results are compared with those of the stationary iterative method [3] and the matrix method
[4]. Moreover, the results of Monte Carlo calculations [18], which are only available without
hot-phonon effects for InP, are displayed in this figure. It is evident that the characteristics
determined by means of our multigroup approach and the other methods mentioned agree
very well in the whole range of the electric field strengths. As a consequence of the non-
equilibrium-phonon-induced perturbation of the electron distribution, the electron transport
parameters are significantly modified. Especially for medium electric field strengths around
the threshold field at the onset of the negative differential resistivity, the values of electron drift
velocity and the average energy, obtained by taking into account hot phonons, differ notably
from those calculated by assuming equilibrium phonons. Hence, the consideration of hot-
phonon effects is of essential importance for an accurate description of polar semiconductors
with high doping concentrations.

According to the comparisons displayed in figures 2 and 3, we find that the investigation
of the transient transport regime by means of our multigroup model leads to results which are
equivalent to those of the matrix method presented in [4].
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Figure 3. Average drift velocity and average electron energy as a function of the applied electric
field, computed at 20 ps from the beginning of the dc field pulse: (——) presented multigroup
approach for hot phonons; (- - -) presented multigroup approach for equilibrium phonons; (◦)

stationary iterative method [3] for hot phonons; (×) matrix method [4] for hot phonons; (∗)
stationary iterative method [3] for equilibrium phonons and (+) Monte Carlo calculations [18] for
equilibrium phonons.

Figure 4. The electron densities 〈n�
ij 〉 in the cells C�

ij in the � valley at t = 8 ps after the onset of

the electric pulse with E = 10 kV cm−1.

4.2. Electron distribution function

For studying the properties of the EDF in the valleys considered, we display the electron
densities

〈
nν

ij

〉
versus the cells Cν

ij . Figure 4 depicts the electron densities
〈
n�

ij

〉
in the cells C�

ij in
the � valley at t = 8 ps after the onset of the electric pulse with E = 10 kV cm−1. Typically,
we find a rapid decrease of the electron density at energy 0.6 eV relative to the bottom of the L
valleys. Moreover, we draw attention to the strong asymmetry of the displayed particle density
with respect to the electric field which reflects the low effective mass of � electrons. This
fact allows us to argue that the classical drift diffusion models with their restriction to close
to equilibrium states would hardly yield reliable results for the considered physical situation.
Therefore, a mesoscopic model such as our multigroup approach is certainly a good choice
for a careful investigation of this problem.

In figure 5, we display the electron densities
〈
nL

ij

〉
versus the cells CL

ij in the L valley,
evaluated at t = 8 ps after the onset of the electric pulse with E = 10 kV cm−1. Here, the
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Figure 5. The electron densities 〈nL
ij 〉 versus the cells CL

ij in the L valley, evaluated at t = 8 ps

after the onset of the electric pulse with E = 10 kV cm−1.

Figure 6. Cuts of electron densities 〈n�
ij 〉 and 〈nL

ij 〉 in the � and L valleys in the direction of the
electric field versus the product of energy and cosine of the polar angle, Eϑ , at several times after
the beginning of the electric field pulse with E = 10 kV cm−1. The solid lines refer to calculations
taking into account non-equilibrium phonons, and the dashed lines refer to those assuming phonons
to be at thermal equilibrium.

deviations of the results from the equilibrium distribution without an external electric field are
small.

Finally, figure 6 illustrates cuts of the polar diagram representations of electron densities〈
n�

ij

〉
and

〈
nL

ij

〉
in the � and L valleys in the direction of the electric field versus the product of

energy and cosine of the polar angle, Eϑ , at several times after the beginning of the electric
field pulse with E = 10 kV cm−1. Here, we compare the results obtained by taking into
account hot electrons with those obtained assuming phonons to be in thermal equilibrium.
The differences between the results lead to significantly different results for macroscopic
quantities such as valley population, drift velocity and electron energy for calculations with
and without hot phonons, as discussed in section 4.4. The detailed explanation of the physical
effects which cause these differences is given in [4].

4.3. Phonon distribution function

The dynamics of the LO phonon distribution function is discussed in this section. Figure 7(a)
illustrates the LO phonon densities 〈rxy〉 in the cells Dxy at t = 8 ps after the onset of the
electric pulse with E = 10 kV cm−1. Here we find that the phonon density is undisturbed at
low and high moduli of the wave vector, while it is enlarged for immediate q. Additionally,
an asymmetry of the 〈rxy〉 is observed, which corresponds to the asymmetry of the electron
distribution in the � valley.
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Figure 7. The LO phonon densities 〈rxy〉 in the cells Dxy at t = 8 ps after the onset of the electric
pulse (a) and cuts of the LO phonon densities 〈rxy〉 in the direction of the electric field versus
the z-component of the wave vector qχ at several times after the onset of the field pulse (b) with
E = 10 kV cm−1.

Figure 8. Average drift velocity 〈v�〉 and 〈vL〉 in the � and L valleys in the direction of the electric
field versus the time t and the reported electric field. The solid lines refer to calculations taking
into account non-equilibrium phonons, and the dashed lines refer to those assuming phonons to be
at thermal equilibrium.

In figure 7(b), cuts of the LO phonon densities 〈rxy〉 in the direction of the electric field
versus the z-component of the wave vector qχ at several times after the beginning of the
electric field pulse with E = 10 kV cm−1 are displayed. The physical background, how the
amplified reabsorption of the hot phonons affects the EDF, is found in [4].

4.4. Transport parameters

To investigate the effect of non-equilibrium phonons on transport parameters in the transient
regime, we compare the drift velocities and energies of electrons in the � and L valleys as
functions of time obtained with phonons at thermal equilibrium to those obtained by taking
into account phonon disturbance.

Figure 8 reports the results for the drift velocity in the � and L valleys for electric fields
of 5 and 20 kV cm−1. For times t � 0.4 ps, there is practically no difference between the drift
velocities obtained with and without hot phonons. Thereafter, a modification of the temporal
evolution of these quantities is observed, which finally leads to a significant difference between
the values for the final stationary drift velocities. In figure 9, we display the average electron
energy 〈v�〉 and 〈vL〉 in the � and L valleys versus time t for electric field strengths of
E = 5 kV cm−1 and E = 20 kV cm−1. Here again, we find that hot phonons are responsible
for a notable modification of the values of the final electron energy. Consequently, we state
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Figure 9. Average electron energy 〈E�〉 and 〈EL〉 in the � and L valleys versus the time t and
the reported electric field. The solid lines refer to calculations taking into account non-equilibrium
phonons, and the dashed lines refer to those assuming phonons to be at thermal equilibrium.

that in the cases of high donor densities, hot-phonon effects cannot be neglected in an accurate
description of the transport parameters in polar semiconductors.

5. Conclusion

We present a multigroup model for the Boltzmann transport equations governing the evolution
of the coupled electron–phonon system in polar semiconductors. Special effort is invested
for the proper formulations of the force term and the POP interaction terms. In addition,
expressions for handling all the other relevant scattering mechanisms are deduced.

Our method is used to study the transient transport regime in response to a step-like dc
electric field pulse. This rather simple physical situation is chosen, because we intend to apply
our model to an already carefully investigated problem, which allows us to prove its validity
and applicability. In table 3, the dependence of the computation time on the applied electric
field strength and the demanded relative accuracy is presented. The comparison of our model
with the stationary iterative method [3], the matrix method [4] and Monte Carlo calculations
[18] shows that the differences between the results obtained with the help of these methods
are negligible.

Several figures illustrate the temporal evolution of the electron distribution functions in
the � and L valleys and the LO phonon distribution function. Additionally, the dependence of
some macroscopic quantities on time from the onset of the electric field pulse is discussed.

Regarding the numerical properties of our model, we find two advantages in comparison to
other mesoscopic methods: (i) the collision coefficients are found to be analytical expressions
as shown in the appendix and (ii) the evaluation of the collision terms is performed in a very
efficient way, even the non-linear POP interaction term is simply given as the product of the
unknowns with a constant collision coefficient. Consequently, our method combines high
numerical accuracy and affordable computation time.

Therefore, we regard our method as a very powerful tool for investigating the coupled
electron–phonon system of polar semiconductors, whose accurate description is essential for
deeper understanding of modern highly integrated semiconductor devices.
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Appendix. The evaluation of the collision coefficients

To demonstrate how to proceed, we evaluate the collision coefficient
〈
Aν,xy

POP,ab

〉
ij

in this section.
Therefore, we consider equation (31b). First of all, we recognize that

|k′ − k| = {k2 + k′2 − 2kk′[[(1 − ϑ2)(1 − ϑ ′2)]
1
2 cos ϕ′ + ϑϑ ′]} 1

2

(k′ − k) ·ez = k′ϑ ′ − kϑ (A.1)

as can easily be verified in the polar representation of k and k′, setting k to the (x, z) plane.
By representing the integration with respect to k′ in spherical coordinates, we find, skipping
the valley index ν,

〈
Axy

POP,ab

〉
ij

= 8π3V
KPOP

q3
x

∫
I E
i

dE

∫
I�
j

dϑ

∫
I E
a

dE′Z(E′)
∫

I�
b

dϑ ′
∫ 2π

0
dϕ′δ(E − Ei)

× δ{{k(E)2 + k(E′)2 − 2k(E)k(E′)[[(1 − ϑ2)(1 − ϑ ′2)]
1
2 cos ϕ′ + ϑϑ ′]} 1

2 − qx}
× δ(ϑ − ϑj )δ[(k(E′)ϑ ′ − k(E)ϑ) − qxχy]δ(E′ − E + h̄ωLO). (A.2)

Carrying out the integrations with respect to E,E′ and ϑ yields

〈
Axy

POP,ab

〉
ij

= 8π3V
KPOP

q3
x

Z(Ei + h̄ωLO)H [Ea − (Ei + h̄ωLO)]H(Ei + h̄ωLO − Ea−1)

×
∫

I�
b

dϑ ′
∫ 2π

0
dϕ′δ[k(Ei + h̄ωLO)ϑ ′ − k(Ei)ϑj − qxχy]δ

{{
k(Ei)

2 + k(Ei + h̄ωLO)2

− 2k(Ei)k(Ei + h̄ωLO)
[[(

1 − ϑ2
j

)
(1 − ϑ ′2)

] 1
2 cos ϕ′ + ϑjϑ

′]} 1
2 − qx

}
. (A.3)

The symbol H denotes the Heaviside step function. By rewriting the Dirac distribution

δ(|k′ − k| − qx) = 2qxδ
[
ϕ′ − arccosN x

ij (ϑ
′)
]

∣∣k(Ei)k(Ei + h̄ωLO)
[(

1 − ϑ2
j

)
(1 − ϑ ′2)

(
1 − N x

ij (ϑ
′)2

)] 1
2
∣∣ (A.4)

where

N x
ij (ϑ

′) = k(Ei)
2 + k(Ei + h̄ωLO)2 − q2

x − 2k(Ei)k(Ei + h̄ωLO)ϑjϑ
′

2k(Ei)k(Ei + h̄ωLO)
[(

1 − ϑ2
j

)
(1 − ϑ ′2)

] 1
2

(A.5)

we achieve〈
Axy

POP,ab

〉
ij

= 16π3V
KPOP

q2
x

Z(Ei + h̄ωLO)H [Ea − (Ei + h̄ωLO)]H(Ei + h̄ωLO − Ea−1)

×
∫

I�
b

dϑ ′ H
[
arccosN x

ij (ϑ
′)
]
δ
[
k(Ei + h̄ωLO)ϑ ′ − k(Ei)ϑj − qxχy

]
∣∣k(Ei)k(Ei + h̄ωLO)

[(
1 − ϑ2

j

)
(1 − ϑ ′2)

(
1 − N x

ij (ϑ
′)2

)] 1
2
∣∣ . (A.6)

Finally, we find

〈
Axy

POP,ab

〉
ij

= 16π3V
KPOP

q2
x

Z(Ei + h̄ωLO)

k(Ei)k(Ei + h̄ωLO)
H

[
arccos N̂ xy

ij

]
H [Ea − (Ei + h̄ωLO)]

×H(Ei + h̄ωLO − Ea−1)H

[
�b − k(Ei)ϑj + qxχy

k(Ei + h̄ωLO)

]
H

[
k(Ei)ϑj + qxχy

k(Ei + h̄ωLO)
− �b−1

]

×{(
1 − ϑ2

j

)
[k(Ei + h̄ωLO)2 − (k(Ei)ϑj + qxχy)

2]
(
1 − N̂ xy2

ij

)}− 1
2 (A.7)



Solution method for the coupled electron–phonon transport equations 1497

with

N̂ xy

ij = N x
ij

(
k(Ei)ϑj + qxχy

k(Ei + h̄ωLO)

)
. (A.8)

As the most important result of this section, we note that the collision coefficient
〈
Axy

POP,ab

〉
ij

as well as the other POP interaction coefficients can be calculated analytically.
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